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Optimization of s t ruc tu ra l  ambers has been a very intr iguing 
s" 

topic of invest igat ion i n  t h e  past t w o  decades 

Development, of new structwa3. caterials, such as conposites, and a 

ferences 1 - 2 ) ~ ~  

eat need f o r  l i g h t  weight s t ruc tures  bas =de it even more important 

t o  f ind  n y t h w  designs using e c p s i t e  materials. 

!fhere w e  several  d i f fe ren t  l eve l s  of trbstractior a t  which the  

basic s t ruc tu ra l  design problm can be approached. 

9s Lo consjder. t he  optham desi@ of s t r u c t u r d  elenents such as columns 

The most conmon one 

snd plates and cmpos i te  struckares such as box bezns and panels fo r  

prescribed 1 oads and prescribed o v e r d l  (ieadilzt;) dhecs ions  ., Thus f o r  

%ndividual elenients, t he  c?tbm design 2nalyses result in the  specifi-  

cat ion of: t h e  cross  sect ional  Okecsions fo r  a given loading index. I n  

cer ta in  applicetions,  it is c?ezningW t o  relax one of t h e  leading 

dimensions of a composite s t ructure  t o  f i r d  a design of absolute minhum 

weight. 

s t ruc tura l  chord f o r  a box been 

for  a c y l h d e r  i n  bending ( 

value of the  loading index, 

1x1 t h i s  case Eecker has obtairied results fo r  the  opthum 

ference 3) end an optimum diaueter 

ference a )  by essefit ially adjusting the 

The concept of l o a d h g  inCices and e f f i c i e m y  fac tors  have been 

proved very usefu l  f o r  the ccxea t io321 isotroTic mterials. 

deve lapent  of these coccerts i s  a t t r ibu ted  t o  Zahorski ( 

The 
f 

, 

1 



They have been used very effect ively by Farrar,  Shanley, Gerard ana 

others 
f 

ferences 6 9  7, 8 ) ,  The loading index concept is applied in a 

aninbum weight o r  eff ic iency analysis by expressing the  quantity t o  be 

minimizer2 (weight) or maximized ( s t r e s s )  i n  terns of t he  prescribed 

dimensions and loads. I n  doing so, the general approach used by nany 

invest igators  5s t o  reduce the  nmber of wiknown dimensicns t o  two o r  

Lhree bj- m.li.5~ su i t ab le  &mess so as t o  the r a t i o  of various dimensions 

h order t o  get  a closed form solution. 

I n  t h e  present study a r e l a t ive ly  new approach of s t ruc tura l  

optimization has been used t o  optimize the  w e i g h t  of a simply supForteC, 

corrugated hat s t i f fened  ccqmsi te  panel under uniaxial conpression. 

This approach cons is t s  of the aplcynent of nonlinear Eathemtical  

p r o g r a d n g  tecl i i ipies  t o  reach an optbum solution. This approach is  

in coc t r a s t  t o  t he  one for which a closed form is  atteropted, since for  

r no s h p l i f y b g  essuzptions axe required i n  general with regzrd 
% 

t o  t h e  cross-sectional dir?ensions. Eowever i n  the  present work soEe 

simplifying assmptions i n  the stress analysis w e  made t o  e f fec t  f s s t e r  

convergence to an 02tbm solutio=. With these simplifying ess*ms%ioos 

t h e  nuziber of unks,o-xn design parmeters i s  reduced t o  twelve for the  

purpose of opthizt i t ion.  

present probles is tvelve 8s co?ripared t o  tsTo or three i n  the loading 

index approach, twelve s b i t m e o u s  equations are needed t o  get values 

Sioce t h e  number of unknown parmeters  i n  the 

of all the  unknovn p a r c e t e r s .  Bence, i n  the loacling index approach, 

either fur ther  s h p l i f y i n g  asswptions have t o  be Eade for  the dizen- 

sions of  t h e  crcss  section or a nore involved stress analysis descrih,ics 



the behavj.or of failure i s  req-dised, For exmple, in 3uckling problem 

d i t iona l  rz0dt.s of f a i l u r e  have t o  be considered. 

T.. the  present analysis, a computer code (Reference 9 )  cal led 

AESOP (Autorca-ted Engineering and S c i m t i f i c  C p t h i t z t i o n  Trogran) is 

used for the opt.iai.zatlon studies 

AESOP cons'ists of sever& optinum search a l g o r i t b s .  Depending 

on the behavior of the perforname function (weight 1 one o r  8 

eombirietion of search algorithms cen be used t o  find the p a m e t e r s  

(design vayieble:; } w h i c h  ~5.11 mjniaize the  perforname fw.ction. 

kXSOP is used to olp th ize  the  design parzneters of the  panel. 

a check on t h e  e f f ec t  of the s i q J i f y i n g  asswpt ion ,  the c r i t i c d  Load 

Then, as 

co:npareti v i t h  t h e  speci f iei: p r k l  iCjRdS.  Good cc r r e l r t i on  vas obteinrd. 

Unfortuziateiy no optini  z e t i o n  resdts are &vaileble f o r  a11 

composite panels, for t he  puqx)se of coz?pzrisc?n, 

rim panels w e  available (Reference 2).  .A conpr i son  ~f the  present 

results was made with %he a-aS.iZble r e s i l t s  a d  good correlation w a s  

found r 

The r e s u l t s  fo r  d u d . -  



I1 

GENERAL APPROACH OF STRU- O ? T I M I W I O N  

Porkions of this chapter c losely follow the material contained i n  

Reference Cg). 

2.1 Concept of oDtimimtion 

In general, any optinization problem can be thought of as m i n i m i -  

zation OT maxhization of a performnce fmct ion .  For example, in 

structural. problems, weight and stress are the perfornance functions. 

Similarly i n  rocket design, the range of the rocket may be taken t o  be a 

performance function. In all such optimization problem the ultimate 

~ i m  is t o  find the value of design parmeters  which w i l l  optimize the 

performance fmct ion .  

2.2 Optbiza t ion  approaches 

!There have been several  d i f fe ren t  approaches used by many investi-  

gators t o  reach t o  an optimum solution. 

techniques used u n t i l  recent years for the  optimization of conventionzl 

s t ruc tura l  members i s  the loadiog index approach (Reference 2). In 

this approach, the loading index i s  expressed in term of weight or  

stress and the  dimensions of the s t ruc tura l  menber. 

One o f  the most powerful 

I n  genera1tbd.s 

can be writ ten as 

loading index = efficiency factor  x (weight index)n 

4 



his equation the  e f f l s ienc  factor  i s  a function of geometric 

roper t ies  of the s t m c t u r e  *-der consideration. These may be t rea ted  

ndependent variables i n  minimization of %he weight. 

index i s  designated as the  nondimensionzl weight fmct ion .  

of weight is achieved by maximization of the  efficiency factor .  

equation (1) 

Tfie weight 

Minimization 

I n  

fi is an exponentp wRose value depenas on the s t ructure  

der consideration. 

"he basic assuzption used i n  arr iving a t  equation (1) for  a given 

s t ruc tu ra l  elmeart of buckJing problem is  t h a t ,  fo r  optimum design, 

at l e z s t  t w o  lowest nodes of instabil i . ty are  simultaneously c r i t i c a l  under 

the applied loading (References7, 11). 

approach the nuL?tjei* of Uz?llmmn parameters i s  reduced t o  two or three 

It should be noted that i n  t h i s  

i n  order t o  get a clos(td form solution. 

ob~ious.  For nore unknown parameters, the problem beeoms more corsplex 

and it becozies impossible t o  get closed form solutions because more 

modes of fdlure hzve t o  be considered ixi order t o  get additional equa- 

The remmn for  cioing so i s  

t i o n s  t o  deterllline t h e  wda~own pasmeters. 

In the gresect problem the  loaiiing index spproach can not be used 

A more ef fec t ive ly  because the nunber of unknown parameters i s  large.  

recent approzch of s t ruc ture l  optimization is t o  use nonlinear mthe-  

m t i c a l  p r o g r d n g  tecb'iques. 

t h e  m h i z a t i o n  or I;linMzation of a pay-off or  performance function 

of t h e  form 

In this approach w e  are concerned with 

Q, 



subJect t o  the array of constraints 

The 

d e t e d n e d  so 6s t o  maxkize or  minimize the  performaace function $(ai), 

subdect t o  the constraints of equation (3) .  The ai may be thought 

upon as t h e  coqmnents of a control vector, E ,  i n  the  space 

&ension K b  

mization ~ 5 t h  a change of sign, it will be suff ic ient  t o  discuss the 

ai are the independent design variables whose values are t o  be 

RN of 

Since maxhization of a function i s  equivalent t o  mini- 

case i n  ubieh perfor~acce function i s  t o  be minimized. 

Bkltivzrieble op t idza t ion  problem involving inequality regional 

constraints r e l a t ing  the design variables may a l s o  be 'encountered as 

f ollcws 

t H ai 5 u. < a 
1 -  i 

The inequality constreints define a region of the control spece within 

which the solution must lie, For example, i n  s t ruc tura l  buckling 

ProbleCS, if the design variables are taken t o  be cross-secticnal 

dimensions, then these ahensions neither can be less than or equal t o  

zero nor becme i n f i n i t e l y  large.  So t he  above l h i t s  bound the region 

in which these variables Eust l i e .  

Inequality constraints on the functions of independent variables 

sMlarly  restrict the region i n  which the op tha1  solution is t o  be 



obtained, I n  this case 

For extmyle, in sl;ructuralbucklir ,g problen, various nodes of buckling 
a 

nodes will c o m t i t u t e  cons t ra iz t s ,  such t h a t  t h e  s t ruc tu re  is capable 

of cemyirig the design lozd. These cons t ra in ts  w i l l  be function of 

iadependent d e s i g n  vilriableg e 

Inequal i ty  cons t ra in ts  can be used t o  r e s t r i c t  t h e  seszch region 

directly, or ,  e l t e rna t ive ly ,  they ~ z y  be transforred i n t o  equality 

constraints .  Severel t ransfornat ions may be use6 for  this purpose. 

For exmple, let a n  equality constraint ,  C,,, be deficed by the 

tr an sf o m s t  ion 
b 

FK E - FK)* ; FK < $ 
CK'( 0 

FK M - FK)2 , $-C-Fg 

c o n s t r d n t  

(5) being satisfied. 

CK t o  zero w i l l  resul-t i n  the cons t ra in t  of equation 
c 

Problem in-folving equal i ty  cons t ra in ts  c2n be treated es un- 

constrained problem by replccifig the actual perfommce fwiction, 

o(cti), by a penalized perfomznce fwx t ion ,  $*, where 
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I? 

3 3  j=1 
+ = + +  c u c 

3 It can be shown t h a t ,  provided the  posi t ive weighting mult ipl iers  U 

are suf f ic ien t ly  lz rge  i n  nagnitude, minimization of the  perfornance 

function subject t o  t h e  eozstraints  of equation (3) is equivzlent t o  

m i r h i z s t i o n  of the  unconstrained pendizecZ performance function defir.ed 

by equation (7). 

uaconstralned dni r ra  t o  be applied i n  the  solution of constrained minima 

problen a t  the cost  of some increased complexity i n  the  behavior of t he  

perfommce fmct ion .  The weightlng mult ipl iers  U are determined 

aeaptively on the  bas i s  of response surface behavior. 

This approach permits search techniques f o r  finding 

3 

Alternatives t o  t h i s  approach ere available,  notably Brysou's 

approach t o  the  s teepes tdescea t  search (Referecce 12) .  This method 

has been exploite6 i n  connection .crith the  numerical solution of varia- 

t i o n a l  problem encountere2 i n  the  optimization of aerospace vehicle 

f l i g h t  paths (Reference 13). 

smoothness of the  response surface. This smcothfiess can not be assumed 

i n  t h e  Froblen of s t ruc tura l  optimization i n  general; hence, the  less 

r e s t r i c t i v e  penality function cpprozch of equation (7) i s  used. 

detai led discussion of solutioa techniques is presented i n  appendix A, 

however, some of t he  search dgori thms.wil1 be discussed below. 

Howeirer the use of such techniques implies 

A 
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2.2.1 Adaptive creep semch 

%‘his search i s  a fo,m of smal l  scale  sectioning; however instead 

locatirrg the position of t he  one-dimensional extrmal on each section 

parallel t o  a coordicate axis, t h e  coordinate i s  merely Ferturbed by 

a o u n t ,  Au i n  t h e  descending direction. P3 

The search comeaces with a snall perturbation i n  one of the 

independent vzriables, a - 6 posi t ive perturbation is first =de; i f  x” 
this fa i ls  t o  produce a p e r f o m c e  kiprovecent, then a negative pertur- 

bation is Lr ied ,  

performance value, t he  vmizble  r e t a ins  i t s  or ig ina l  value, and 

If cei ther  of the  perturbztions produces an improved 

Aar is  

halved. If A. favorzble perturbation i s  found, t h e  var iable  a is set 

to t h i s  vdLi:e, tnd 

independeat Yar-izble i n  tcrn, t he  order Fq which the veriables are 

pertwbed being chosen rarrtcdy. A t  t h i s  point an adaptive search 

cycle is coz?lete, EL? the  cycle i s  then repeated. 

i l l u s t r a t i o n  of t h i s  search is  presented i n  figure (1). 

part iculer  problem i l l u s t r a t ed ,  the  raethod converges rapidly reaching 

r 
is doubled. The process is repeated for ecch “r 

A tvo-dhensional 

I n  the  

the neighborhood of the  extrezal  thin s i x  evduat ions.  

The search KLgorithn c2n be wr i t t en  i n  t h e  form 

where 

perturbed the rth inzepexdenl .aari&le, and T i s  the  nuuber of 

cycles i n  Vhich the perturbation of the  

S, i s  the mxber of cycles i n  vhich the search has successf’ully 

r 
rth variable has proved 



10 

!: 

unsuccessful. 

perturbation fo r  each independent variable. 

proceeds inex5tably t o  i t s  conclusion, the perturbation i n  each inde- 

pendent s s r i ab le  being adaptively determined according t o  equation ( 8 )  

Here, t h e  scalar  quantity (DP) merely defines an i n i t i a l  

Once started the search 

on t he  basis of the performince f’unction response contour behavior 

encountered dGing  the par t icular  problem solution. This search can be 

qui te  e f f i c i en t  when used in cozbination with the pat tern search 

accelereticn procedure. 

2.2.2 Pattern search 

In the present work, pat tern search r e fe r s  t o  a search which 

exploits a gross direct ion revealed by one of the other searches. The 

search i i lgcjri th i s  

2 1  Acti = (ai - ai) * (DP), i = 1, 2, * . , N ( 9 )  

where ai and at are tkcoIIiponents of the control vector before 

and a f t e r  the use of 8 preceding search technique. 

t r a t ed  i n  f igure (1) follobing an adaptiTe search. 

This is i l l u s -  

The combination of 

an adaptive search and a pat tern search i n  the problem i l l u s t r a t e d  

leads a i r e c t l y  t o  the  neighborhood of t h e  extremal. Repeated adaptive 

sezrch on the  other hcrod, would be a very slowly converging process 

due t o  the  orientation of the contours w i t h  respect t o  the  axes of the 

independcnt variables.  

independent variable exes by 45O results i n  adaptive creep alone 

becmirg  p. r a p i a y  converging process i n  t h i s  example. 

It may be noted that a shp le  rotat ion of t he  

The present 



discussion of optimization concept is ra ther  super f ic ia l .  Detailed 

ealnents  cay be found i n  (References 9, 22) a 

2.3 Generzl s t m c t u r a l  optinization cycie 

Figure (2)  shms  a typica l  optimization cycle. F i r s t  of a l l  the  

geometry (e.g. f la t  pvle l  with corrugated h a t  s t i f f ene r s )  of the  struc- 

%we, t h e  loads, and the  Eaterial we specified.  An attempt i s  then 

made t o  f ind  t h e  values of Cesign varizbles,  which will minimize the 

weight of t h e  s t ructure .  Figure (2) sfious soEe of the iiesign variables 

for e c o x p x i t e  pznel subjected t o  coxpressive loads. These design 

variables axe 

1. Cross-sectlcml djmersicrs: I n  t h e  optimization problem one 

has +A fin2 t h e  dirrensions of t ke  cross-secticn which will mininice 

t h e  weight of the  pacel. 

2. FiLment cr ieztzt ion:  This meam, t he  or ientat ion of f i l a e n t s  

w i t h  respect  t o  a reference axis. 

3. Percenteqe of 2ifferent  criertetions: This simply means the 

percentage of d i f fe ren t ly  oriented lwninates required i n  a Lamine . 
For exauple, i f  only two kinds of laxinate or ientat ions are used, 

say 0" and 90" one t;as t o  know t h a t ,  hov Euch of each is needed i n  

a structural n a b e r  t o  obtain the  l e a s t  weight design. 

4. Laninrt ini  sequence: This r iems the  sequence i n  which d i f fe ren t ly  

or iented 1z;llirates Ere arrmged t o  nake a s t ruc tu rd .  member. 

There could be cc re  design varizbles depending upon the  need of the  

problen u n C e r  investigation. In  order t o  f i n d  the value of these design 
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variables one has t o  i t e r a t e  seyeral t i nes  i n  such a way t ha t  these 

values represerit the design of minixnun weight. 

s t r e s s  m X y s i s  of the s t ructure  hes t o  be made during each i t e r a t ion  

cycle. 

necesssrry -to mke  sone s b p l i f y i n g  assuription for  the purpose of 

s t r e s s  aia1ysiie 

fornulation of the problen: i s  given. 

Ve note that a conglete 

kn order t o  cut down on the  i t e r a t ion  t h e ,  it will be very 

' M s  is done in the next chapter i n  which a detai led 



I 

SXS 

3.1 -- Fornulation of the problm 

%%e problem under considerztion here, is tbat  of o p t b i z a t i o n  of 

sirr;=ply supper'ted all coaposite eorrugzted hat st i f fened ]Fanel under 

i a x i a l  coqmession. Figure ( 3 )  shok-s the pirael un6er consideration. 

The Icatericrl used i n  t h e  analysis is zpfiite/epoxy. 

'1 &sic assmptions 

3. the panel n a b e r s  are thin- plates shp3.y sup2opted on all 

four edges. 

2& 4uI t h e  panel men;bers are orthetropic end have constant 
I.) 

thickness. 

3. 

+45*, -45*$ r e l a t i v e  t o  the  exid direction. 

h l y  three ~ n d s  of l m i s z t e  or iectzt io2s are used, nmely o0, 

k ,  'Yie ld  s t r a i n  i n  compression fo r  any panel amber is equal t o  
0 yie ld  strein of lanine-tes i ispective of the prcen tage  of o 

5. Each panel member is assuzed to have only three lzyers, 

6, 0 Laninate lzyup i n  eech pace1 cerber is s s sEed  t o  be 245 , 

o", T44O. 

7. Effect of Poisson's ratio is  neglected i n  c a l c v h t i n g  the 

load carried by each pznel nez3er. 
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8. Panel i s  asswed t o  behave like a wide colucll fo r  the purpose 

of M e r  buckling analysis. 

9- 

ignored. 

Torsional and loca l  crippicg I'zilures of the  panel modes are 

3.1.2 Perforcame flmction 

Under the  assunption of wide c o l w  behavior only one pi tch of 

the s t i f f n e r  spacing is  required f o r  tke purpose of further analysis. 

Figure (4)  shows a representetive cross-section of the penel. 

The performance function i n  cur acalysis is  e function of weight. 

It is chosen t o  be the weight per uiit a res  per u n i t  width of the panel. 

3.1.3 Design Varieb1es:- 

Taking i o t o  consideration essmption (3) , ( 5 )  a d  ( 6 ) ,  the  nmber 

of unirnokp design variables i s  recuced t o  txelve. They a r e  (also see 

Figure 4) 

1. Width of each panelneEber, bi 

2. 

3. Percentage of +-b5 l d n a t e s  i n  each penel nexber, fi 

Thickness of each pecel rcmber, ti 

J 0 

where i = 1,2,3,4 

3.1.4 Constraints: 

The panel nust  meet cer ta in  feilslre c r i t e r i z?  and prac t ica l  



requirements in order to be a val id  design. They are as follows 

1. 

than or equal t o  the epplied load. 

IIocal buckling load of each pmel mmber should be greater 

pa. P i p s  i 

2o 

than or equal. t o  the asplied loeding, 

M e r  ‘buckling load of the t o t d  pazlel should be greater 

3. Apslled straic of t k e  

equal to cutoff ,  or .yield 

- 
a ’ Nx k e r  

R 

total  panel should be l e s s  than or 

strein. 

& L E  Y 

3 4. Stiffner spacinG shculd be greater thar? or equstl to b 

5. 

pract i cd  interest,  

Value o f  design variebles shocld be limited i n  a region of 



For exmple, percentage of +45O lauinates (fi) ces not be less than 

zero m d  greater then hundred. 

me value of all t h e  above neritioned permeters  are obteined througf., 

t he  use of a s inpl i f ied  stress axxdysis, as discussed below. 

3.2 Stress hzlysis 

3.2.1 hzZ, in ecch g m e l  oeber 

Lets &ssme N is the load intensi ty  per wSt width, aa i s  the  
X 

r u t i d  stress in each p n e l  nenber, and P is t he  t o t e l  load per u n i t  

s t i f h e r  spacing. ITOW we can write 

. P = N  * b  
X 

and 
4 

i=1 
P =  C a d A i  

Because of ccEpzt ibi l i ty  considerations, the  strair, i n  ezch penel 

Eezzber has t o  be equd .  

rctio. Eence 

Here we xi.ll neglect the ef fec t  of Poisson's 



5 = 1, 2,  3, 4 e-’- =ai 
Ei 

om Equctions (18) m d  (19) we get 

4 
P r  .E: € E i A i  

1 i=1 

Solvicg t h i s  equation f o r  the s t r a i n  

obtain 

E and using Eqw-tion (17)? we 

Nx 
4 
C Ei Ai 
i=l 

e =  

PimCLy the lozd P i n  eech panel member is thec given by 
ai 

Nx b Fi Ai 

E: Fi Ai 

P = a a  Ai =,-&----- 
i 8. I 

i=l 

3.2.2 +Xacal bucklicg 

Each pw*el naber is asswed t o  be orthotropic me sizplg- supported 

on all four edges. 

we can write 

Hence from orthotropic plate theory (reference 131, 

c 

(m + D12 + D66) 
2n2 a, = - 
b2t 

P, = a, b t 
. .  

where, 



0% - is t he  l o c d  buckline stress 

0, - is t h e  width of the  p la te  

t - is the  thickness of the p l a t e  

R 

PR - is the local buckling load 

- are 'the beniiir-g s t i f fnes s  coeff ic ients  i5 

Here for the s&e of s k p l i c i t y  subscript i has been omitted. However 

this ecpaticn &?plies Lo ezch pznel member. 

3.2.3 *Bile? back2icg 
e 

We will cozsider one pitch of s t i f fne r  spacing for  the purpose of 
I 

N e r  bwhl icg  er?Llysis. 

percentage of - + 

Since each panel member can have different  

0 45 Iznbates ,  eecb panel member is l i a b l e  t o  have 

different  vdue c ; f  Young's codulus. 

load, we w i l l  use the  equivzlent a-rea approach t o  f ind the effect ive 

I n  order t o  f i cd  the N e r  bucklir,g 

Youg 's  no3iG.c~ 8-d effect ive area of each panel nezber. Then w e  can 

In this expressLon 5 * I is the effect ive s t i f fness .  Next we obtain I. 

Let us esswe 

yi - d i s t a c e  of center of gravity of ith panel member from reference 

axis (shown in Figure 4) 

- Yomg s ~ o d u l u s  f o r  the ith panel member Ei 



- Area of the ith panel member lli. 
y - ckistance of the effect ive center of gravity of EA 
-+. 

distribution from reference axis 

so xe cen write 

c Ei Ai Yi - i=1 Y =  4 

By dividing both the denominator and the nunerztor by El, we obtain 

4 Ei Ai 
c -  E 

E. Ai 
c -  

yi - i=1 1 Y ”  4 
1 

i=l E1 

therefore 

4 
AT Ei - i-1 

Y =  4 
C A! 
i=l 

From Figure (4)  w e  see that 

and 
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Hence 

A; b2/2 + A* 3 b 2 + + t1+)/2 
* + + + A * )  

( A 1 2 3 4  

. 
I n  order t o  find the r;onent of i n e r t i z  cbout the  center of gravity 

of %De cross-section, ue sho3uld adjust thz  e f fec t ive  rridth and t he  effcct.5,t.e 

th ic*hess  of eech Fanel nexber i n  such a my t3c.t t he  respective distance 

of the  center of  t he  gravity of each paiel  Ember should renain unaffected. 

For exmgle,  with reference t o  t h e  f i g k c  ( 5 )  we note the  width of the  

h o r i z o n t d  pmel Ember has been t?odifie3* bxt cot  the  thickness. 

However, for the inclined pariel necbers, the tkickcess w i l l  be Eodifies. 

Hence we can define 
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Therefore, t he  Eoment of i n e r t i a  I, is given by 

2 + b * t  3 
I 1/12 -t- b6 t4/6 3 3/12 E - b t  

3.3 Discussion of ninimizetion procedure 

At thLs point it i s  not.ed that the  standard %:eight strength parameters 

l?x/L and the  weight per u n i t  area per un i t  length (W/bL ) (Reference 

The length of the  panel i s  not by i tsel f  a design parmeter .  

2 are 

7). In 

t h e  present a n i i L y s i s ,  we  will assuae t h a t  *he loading 'E and length L, 

of t he  panel are hown design parmeters .  Eo\-ever it  ill be shown i n  the 

optimization process t h a t  t h i s  approach will lead t o  the  same weight 

strer;gth p lo t .  

Nx and L separately. 

X 

The& is ,  I? /I, i s  indeed the  per t inent  pzrameter, and not 
X 

I n  order t o  minimize the weight f'unction of equation (lo), it Kill be 

necessary that all.  t he  constraints  of equation (12) through (161, be 

sa t i s f i ed .  Af'ter s a t i s f y i n 8  a l l  the  constraints  and reeching a minimum 

solution, t h e  outccne of t he  analysis w i l l  be the extreziying values of 

design +ariables of equation (11). 

solution, an opt inizst ion computer progrm PESO? is  used (see appendix 

A and Reference 9 ) .  

For t h e  purpose of rezching a ninimm 

It is very inportant t o  check the  e f f ec t s  of t he  s inpl i fxing 
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assumptions. For this purpose another exis t ing computer program BUCLASP- 

2 5 s  used. (See appendix B and Reference 10). This program i s  capable 

of performing the  buckling analysis of a b iax ia l ly  loaded composite panel. 

A short  description of t h e  assumptions naOe i n  BUCLASP-2 analysis and t he  

mthematicel m d e l  required for  t h e  purpose of analysis is presented i n  

Appendix-B. It should be noted a t  this point t h c t  BUCLASP-2 is not used 

as an optiaization program, but it is used t o  predict  t he  buckling loads 

0% 8x1 optinized- panel. 



NUMEBICAL RESVLTS 

I n  t h e  present work following two cases of hat  s t i f fened panels 

under uniaxial  compression have been opt i d z e d  using "AESOP". 

1. All-aluminum panel 

2. All-conposf-be (Graphite/Epoxy) pariel 

The material properties used f o r  t he  purpose of esalysis  are presented 

in T e U e  (1). 

-Wbles (2) through (7) give the values of optinized design v a r h b l e s  

for vzr ious loading conditions and length of minimxu weight Graphite/Epoxy 

panel. The values of the design variables for  various l c a d h g s  and length 

of t h e  n i n h u n  weight a l d n u m  panels are shown i n  Table (8).  

Wbles (1) through ( 3 )  show the  values of weight per -it area per 
2 un i t  length (W/bL ) and axial load per un i t  length per uni t  width (Nx/L) 

for di f fe ren t  lengths of the panel. It can be seen tha t  for  same value 

of Tlx/L t he  correspofiding value of W/bL is  sinilzr i n  ell three cases. 

This proves t h a t  Nv and L do not have t o  be considered separately 

2 

but 

and 

4. 

only N /L should be considered while obtaining these plots.  
X 

Figure (6) shsws a standard weight s t r e n a h  plot  fo r  a composite 

I n  Figure ( 6 ) ,  ai a l l  a l d n u n  panel under uniaxial  corpression, 

2 N /L 

t he  weight of the  p a e l  per unit area. per uni t  length. 

is t he  load per uni t  -ddth per u n i t  length, and W/bL represents 
X 

23 
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Results of Reference (2) and t he  results obtained through the  use of 

BUCWP-2 (Reference 10) are also presented i n  F i w e  (6) for  t h e  purpose 

of cozprisx:- 

i 

For the all a l d n u n  panel, a conparison w a s  made with the 

results obts'iced by Crawfore and Rurns (Reference 2). 

figure ( 6 ) ,  the Fresent results show a slight weight advantage over t he  

As may be seen from 

results obtaznei! i n  Refereme (2 ) .  

presext e31dysLs no e.ssmption uils =de with respect t o  t h e  cross- 

sectional djrxmfons of t he  panel * 

uses t h e  conditior? that  for nicix*a weight, t he  loca l  buckling stress i n  

eexh ~ m e l  Ember i s  s e t  equa l  to t he  mer  buckling stress of the whole 

k2hi.s may be due to the f ac t  that i n  the 

It is a lso  noted t h a t  Reference (2) 

panel, Ers the  Tresect mzlysis no such condition for  mininum weight design 

was izposed- 

after IL?inkizZtion process sho7**ed t h a t  i n  f ac t  for micislum weight, 10cc.l 

Eovewer it i s  i r k r e s t i n g  t o  note t t z t  the r e su l t s  obtaines 

buckJing mci Fxkr bil&l.irg s t resses  sfioufd be equal f n  each 

panel Biersber, 

For dl coxyosite panels en titterpt vas m a l e  t o  &e a compzriscn 

with a-rsilable opth5zat ioo results. Unfortunately, the author vas unable 

to f ind such resu l t s .  

e f fec ts  of s i rq l ie iz lg  cssmption employed i n  the  present stress analysis.  

This wes dcne by deterr ic icg the buckling load for  t he  o p t h u m  panel by 

using t h e  EVCLr-SP-2 c c z p t e r  progrm, which i s  

So instezd, a comparison vas mede t o  study the  

devoid of such assumptions. 

k cozpxrison w a s  then rade tetueer: the buckling load o5teined by BUCUST-2 

for t h e  o p t h m  Fenel znd the  specified load, thzt  vas used i n  the presezt 

a n d y s i s  t o  obtain the  optinuz ranel.  

between the  present r e s u l t s  ar,d thcsc obtained tkrou&h the use of BUCISP-2.  

Figure (6) shows good correlation 



The advantsge of employing sixzplif'ied stress aczlysis  is, that it results 

n very small computational t h e a  For exmple, k i t h  the use of the  

s h p l i f i e d  stress analysis,  t he  runtime for  1500 i t e r a t ion  is  about four 

seconds on t h e  CDC-6600 conputer. It is interest ing t o  note that even 

for all coxqosite panels, the results obtained through the  use of BUCLASP-2 

show that the  &a1 bwkling load and M e r  buckling load of optimized 

par-els i s  very close t o  each other. 

Exesination of Fibiure (6) reveals t h a t  all conposite panels weigh 

a p p r o x h t e l y  half 8s m c h  as a l l  r i l d ~ m  paaels. 

conposite panels i s  very useful for  zofiern a i r c rz f t  technology. 

This result for a l l  

It is 

hoped t h a t  t he  results of this study w i l l  lead t o  fur ther  investigation 

i n  t h e  use of cozposite lclzterials for  various design problem. 

F igwe  (7a) ccd (p) show t ha t  there axe two different  design possible 

for the 8me loading confiition F i w e  (?a) pertzins  t o  a l i gh t ly  loaded 

panel (ITx/L = SO) whereas figure (m) applies to a heavily loaded panel 

(B /L = 500). For ezcl; loading case, both 04 t h e  desigcs veigh almost the  

same (see Tables 2 and 5 ) ,  but both have d i f f e r e n t  vaiues of design 
X 

variables. This pheEonenon alloys for mre f l e x i b i l i t y  during the desigz 

process and less weight penzl i t ies  w i l l  be fe l t  if pract ica l  constraints 

(e.g. nanufacturifig r e s t r i c t ions )  =e bqosed OF. suck: panels. Hoxever 

one should rdie sure i n  such cases of niLt igle  optinun; designs, t ha t  

these designs are rot the  result of the  var iom assumptions Eade during 

the stress ulelysis .  Figure (8) shews the  bucKLini; rcode shapes for  t h e  

two kLghly lozded p-mels (Figure n). These Eode shapes were obtained 



fros BUCUSP-2. "he panel i n  Yiwre (8a) i s  very deep as coEpared t o  i t s  

width end fa i ls  i n  a tors ional  mode. Since t h e  tors iona l  node of failure 

was neglected i n  t h e  stress analysis of the  given panel, this..panel is not 

a val id design, a d  can be ignored, 

l o c a l  buckling icode, such t h a t  a l l  t he  panel neribers behave almost s i q l y  

supported, k-hich is in accord with one of t h e  s i rp l i ry ing  assumption. 

The panel i n  Figure (8%) fails  i n  a 

I 

We note the panel on t h e  bottom of Figure (7) have one hundred 

percentage 245' :laninates i n  the skin and i n  t he  inclined gmel members. 

Also t he  thickness of the inclined rdenbcrs end skin i s  very s m a l l  conpared 

t o  the  t h i c h e s s  of other panel members (See Tcbles 2-7). 

t h a t  rcost of t h e  load is carried 'by 0' f i laxents ,  which is  desirable i n  

r 

!lhis suggests 
... < 

order t o  have most e f f i c i en t  panel. A t  t h i s  point it should be notei? 

t h a t  under such condition neglection of' the" e f f ec t  of Poisson's r a t i o  i s  

a good assunptlon. Recall t h a t  this assmptiot.1 FES rmie i n  the  calcu- 

l a t ion  of t h e  rxk.1 loud carried by each panel nexzber. These panels 

also ver i fy  e very useful  concept of reinforcing hzt s t i f fened metal l ic  

panels. 

i n  the  direct ion of t h e  loading. 

I n  reinforcing such panels strong loed carry;lr.g mcterial  is abcied 

For exacplc, t he  reinfcrcenent i s  ac?ded 

along the f larges  and t he  skin connections i n  ccse of hat  s t i f fened 

panels e 

Final ly ,  it is noted t h a t  some of the assuzptions Eade i n  the  analysis 

of these panels did not e f f ec t  t h e  r e s u l t s  t o  m.jr signif icant  z o u n t .  

mese assuzptions are discussed next. 

1. The yield s t r a i n  nSSUEf2d t o  be t h 8 t  of E31 Oo f i l rGents  i S  

ccssidered .Lo bc a gocd asstzzption beccuse East of the load is cctrried by 

0 f i lzxrts,  0 
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2. Laminating layup i n  each panel member turned out to be of no 

bnporteoce, becsruse all the pmel  members have only one kind of laminate 

oriectat ion,  i.e. - +45O or Oo, and never have both Oo and +4S0 filaments 

orientatlctn. 



In t h e  preser,t work an attelrpt has been made t o  discover some of the  

new concepts i n  the optinUn design of s t ruc tura l  meEbers, conposed of 

composite nateri’als. Sirce there  are no available results for  the purpose 

of ccziparison, it w i l l  be very desirable t c  carry out experkenta l  ve r i f i -  

cat ion o f t h e  results obtained i n  the  present ar;alysis. 

noted t h a t  t he  results obtained i n  the  present analysis are optimms but 

are not very pract ical .  For exexple, it i s  not desirable t o  have a l l  0’ 

It should be 

f i l w e n t s  i n  acy of the  panelnezbers.  

constraints  will resalt i n  a heavier pme l .  

variables are chosen i n  such a v ~ y  the,% an ~ ~ t i m m  desl’E;n includes the  

p rac t i cz l  ccnstraints ,  re la t ive ly  l igh ter  prac t ica l  designs may be found. 

For t he  case considered herein, t he  present a n d y s i s  show t h a t  

c a p o s i t e  pmels  are approximately t d c e  as l i g h t  as a l l  aluninum panels. 

It is hoped t h a t  t h i s  result w i l l  inspire  further investigations in to  

the use of c o q o s i t e s  for optin;um d e s i s s .  

of the  assmptions were very crude and need t o  be Eodified. 

The impositicn of such prac t ica l  

If instead, however, the design 

I n  the  present analysis some 

For example, 

the y ie ld  s t r e i n  for the whole panel was assurted t o  be equal t o  yield 

s t r a i n  of all 0’ f i l c e n t s .  

not e f fec t  the design t o  any s ign i f i ca i~ t  aqount, becEuse nost of the load 

This essusl;tion i n  the  present enalysis did 

0 is cz r r i ee  by Q filtmer-ts. 

Tkis suggests e nore general yield c r i t e r i a  is required. Furthermore it 

will be in t e re s t i cg  t o  i rxes t ig r t e  Fanels with differel-it Geocetry, botlcdary 

conditlons a d  loading conditions. 

Hovever t h i s  will not be t rue  i n  general. 

2% 
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APPRTDIX A 

Optimization Technique 

This appendix i s  presented here fo r  t he  seke of completeness. The 

contents of this appendix are available i n  reference (9). In  this appendix 

techniques Etvailable i n  !-ESOP, for the  solution of non-lineer nul t ivar iable  

o p t h i z z t i o n  problem are  discussed. 

have been devised for the  solution of multivariable optimization problem. 

Many of these a l g o r i t h s  are r e s t r i c t ed  t o  the  solution of l inear  or  

quadrEtic problexs. 

A wide var ie ty  of search a l g o r i t h s  

Algorithm of this type nust be supplemented by more 

general seerch procedures i f  generali ty of solution is  sought. 

because er?gineerir.g problem tend t o  lead t o  non-linear formulation with 

the  poss ib i l i t y  of discoct inui t ies  i n  both the  perfomance function response 

surfeee ecd i ts  derivative.  Nost of the  searches which prove effect ive i n  

these Froblens conbice a direction generating d g o r i t h ,  such as steepest- 

descent, wtth a one-dilrensional sezrch. Distance traversed through t h e  

control space i n  the selected direction i s  neesured by a step-size, o r  

perturbztion parmeter  DP. 

is to d e t e d n e  the  value of DP which minimizes the  perfomance function 

This is  

The object of t he  one-dimensiocal search 

along the chosen ray and t o  es tabl ish the  correspnding control vector. 

I n  prec t ice ,  t he  diverse net-we of non-linear ml t i -var iab le  opti-  

rCization problas  leads t o  the conclusion tha t  no one search algorithm 

can be uniqui l ly  described as being the  "best" i n  a l l  the s i tuat ions 

which rzy be encountered. 

xhicfi Kay be of qu i te  e l a e n t m y  nature, provides the n;ost re l iab le  end 

Rather, a conbination of searches, some of 

econozical con-;ergence t o  the o p t i m l  solution. 
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One dip,ensiorel sezrcfi: E.!ultivariable setwch Frobleas are reduced 

t o  one-dioensicnzl problms whenever a search algoritf-s is used t o  

es tab l i sh  8 one-to-cne correspondence between the  control  rec tor  and a 

sicg3.e scalar pertmbztion parmeter ,  DP, I n  such a s i t c e t i c n  

ui = ui(DP), i = 1, 2, . , TJ 

so that eq-uztiozi (2) becczes 

S k i l z r l y ,  kke  rigkt kat? sizes of equation ( 3 )  &rid (7) b e c n e  fuactions 

of the  scEilzr p-r.t:zbaticn pcrsrreter I 

'j%e relat ionship,  eqwticn (/d ), spec i f ies  a rey tfLrOt;gh the  control  

As noted a3~;de.  the ob3ective of t he  one-dhecsicral sewch along space, 

this ray i s  %u Iocete the  velue of DP which provides the r i n h ) m  perfor- 

mnce function vsiltle, 

K m e r i c d  seerch for  the one-dimensional a in ina  c a  be czrr ied out 

In a loce l  fashior., by Lke Carton-Raphson method, f o r  e x c p l e ,  or by a 

global sezrch of the  rcy tkzoughout the feasible regicn. 

polgcc~5a2 epprox3.mtion is appopr i a t e  to the  terrtlczl corxergence phase 

i n  a problec solution k-ken saxe knowledge of the  e x t r e z d ' s  posit ion has 

been accuzulalei! by tf?e preceding portion of the  s e a &  er9 t h e  prcbleq 

involves a S K O C : ~ ~  ftmction. 

i n  t he  openlnG rxn-es of e semch. 

ob,ject is t o  5 r;olrte the ayproxhcte neighborhood of t he  rii~Lrm peri'omscce 

%e local ized 

The global search em. he used t o  advantege 

In the  ear ly  ptzse of 2 seerch t he  
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fu;rctioa value as rapidly as possible, usually Kith l i t t l e  o r  no fore- 

knovledge of the  performance function behatior. 

effectivecess of a search algori tha i n  such a s i tua t ion  is the  nunber of 

evaluztions required t o  locs te  the  d n k m  point t o  some prespecified 

accuraq , '  

min im2  po'int, of' a general unizodal function i s  a Fibonacci search 

(refereme 21). 

One measure of the  

1% c m  be shown that the  oost effect ive method of locating the  

In  this Icethod, t he  accuracy t o  xhich the minimum is 

to be Soczted alocg the  perturbation peraceter axis nust be selected 

pr ior  t o  the  comencenent of t he  search. Sioce the accuracy required is 

bighly 2epecdent of t he  behavior of t h e  perfomar,ce function, this guan- 

titry is d i f f i c u l t  t o  prespecif'y. 

bespec i f i ca t ion  of t he  accuracy t o  which the extremal's position i s  

4x1 be Icceteci can be avcjided for  l i t t l e  loss  i n  search efficiency by use 

cf an e l t e r m t i v e  search baseci on the  so-called golden section. 

21), 

( refereme 

This i s  tne method employed i n  the JXSOP code one-dinensiondl s e u c h  

procedure. Search by the golden section cozxences with t he  evaluation of 

the  gerforcaxe function a t  each e22 of the search interval  and a t  

G = 2/(1 a t  6) of t h e  seslrch in te rva l  fror; both of these bounding points. 

TILLS :i.s i l l u s t r a t e d  i n  figure (a). 
The bounCary point fur thest  fro3 the  lowest resul t ing perfomance 

f m c t i c n  vdlue is discarded. The three r e c i n i r !  points a r e  retained, 

mc? t he  sezrch continues i n  a region which is dininished i n  s ize  by 

Tie internal point a t  which the  p e r f o n a c e  function i s  knom i n  the 

G .  

redaced ic te rva l  will be zt 8 distccce G cf the  rezuced in te rva l  f r m  t h e  

i-e=icicg t o w d i n g  poiist of the crigical ix te rva l  f o r  (1-G) = G . 2 Tie 
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search can, therefore,  be eofitinued i n  the reduced in te rva l  with a single  

addi t ional  evaluation of the  performance function. It follows after Q 

evaluations of the performance function tha t  the posit ion of the extrenal 

point Kill be known within R of the or ig ina l  search region where 

. (Q-3 I R = G  (A3 

To reduce the in te rva l  of uncertainty t o  .00001 of the or iginal  

search in t e rva l ,  about.27 evaluations of t he  perfornance function are 

required. 

function, this type of search i s  almost as  e f f i c i en t  as a Fibonacci 

search. 

For a reasoneble nmber of evaluations of t he  performnce 

It should be noted tha t  search by the  golden section proceeds uncler 

t he  assumption of unimodality; hence it w i l l  often feil  t o  detect  the 

presence of more than one minimum when the performance function i s  multi- 

modal. 

performnce behavior withir, t he  o r i g b a l  search in t e rva l .  

If more than one minimum does ex i s t ,  the  one located depends on 

Multiple Extrenals on (i One-Dimerisicnzl Ray: The one-dimensioml 

section search described above is unable t o  Cistinguish one loca l  

extremal from another; it w i l l  merely finc? one loce’l extrcmal. 

d i f f i c u l t y  een be l a r ~ e l y  eliminzted by the addition of some logic to 

the search, at least for  moderately well behaved performance functions; 

t h a t  is, f o r  fmct ions  hzving ti l ir i i ted ntmber of extremals i n  the 

control space region of in te res t .  

multiple extrenals i s  t o  combine the  cne-dkecsionel sezrch wi th  e 

T h i s  

A n  effect ive nethod for detecting 
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random one-dimensional serach on the  same ray through the  control space. 

This is i l l u s t r a t e d  i n  figures A2 end A3. I n  Figure A2 t he  response 

contours of 8 performance function having two minirsa are i l l u s t r a t e d  

together -with the  i n i t i a l  points used i n  a global one-dimensional search 

by the  golderr section method. 

points i s  shown i n  figure Ak A3. 

The behavior of the function a t  these 

The l e f t  Find n i n i n ~ m  i s  not apparent 

f roa  these p i n t s .  If a single random point i s  added i n  the in te rva l  

Lo, the probabili ty of t h i s  point revealing the  presence of the second 

uinirnum is 

P1 = L1/Lo 

for  my point i n  the  in te rva l  AB indicates the presence of a loca l  

minimuii somcvrhere i n  the in te rva l  AB, and any point i n  the  in te rva l  BC 

indicates the  presence of a loca l  m x i m u m  

In t h i s  l a t t e r  case, there  must be a minimum of the  function both t o  the 

somewhere i n  the in te rna l  BC. 

.left tr,nd t o  t h e  r igh t  of the cewly introduced point. 

If random uniformly dis t r ibute6 points are added i n  the interval  L 0' 
%he probabili ty of locat ing the  presence of the  second minimxi becomes 

= 1.0 - (1.0 - L ~ / L J ~  pR 

The function (L1/Lo) i s  a czeaswe of t h e  p2rfcrmance function 

behavior. For a given value of t h i s  behavior Ifunction the nmber of 

random points which nust be added t o  t h e  one-dinensionrl search t o  pro%-idc 

a given probabili ty of 1.ocrsting a second miniacum can be deteroired. 
= 



The presence of c u l t i p l e  n i n i m  on a one-dirensional cut  through an 

N-dicensiond s p c e  does not cecessarily indiczte  t h a t  the  performance 

f’uncticn possesses m r e  t b n  ooe ninlnum i n  a multi-dimensional sense. 

It mey be thet %he Ferfom-Eince function is se re ly  non-convex. This is  

i l l u s t r a t e d  b> figure P-4, 

dherisicnd. search i n  f i w e s  k2 and Ab is ident ical .  

The pesforrmce function behavior on the one- 

I n  f igure A2 t h i s  

indicates the  presence cf two l o c a l  extrerzals; i n  figure Ab, a non-convex 

When 8 one-dhensicnzl seerch detects  t he  presence o f  multiple 

extrmals i n  the l oce l  sense zbave, a decision Eust be made as t u  which 

of the zpparent extscels i s  to be pursued dwing t h e  reminder of the  

search. Here, v’lthout foreknorrledge of the perforzance function behavior, 

logic mst sllrf’ice. TypicriiLy, the  left or  righ: hmd extremal, the 

extras1 vhick r e su l t s  i n  t h e  best performance, or  even a random choice 

may ’De mde. 

It should be noted that  logic of this type is cot  currently 

a v a i h b l e  i n  tke AESOP cmie, ??he AESOP one-dircensional search procedure 

has th ree  d is t inc t ive  pkases. F i r s t ,  each search algorithm defines an 

i n i t i a l  perturbation usir?g eittier past perturbation s tepsize informa- 

t i on  or a p c r t u b s t i c n  nagpitudc prediction as i n  the  quadratic search 

(Reference 9 )  e 

eaployed until z point exhibiting di~nishi~.le, p e r f c m c c e  is &enerated. 

Second, a perturbation stepseze d o b l i n g  procedure is 

Third, ha%-iEg coarsely Cefined the  ane-Cbensioscl extremal position from 

steps one er.d/or two ,  a &olden section search is ernployed t o  locate  the  

extresal with rebsonzble precision. 
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f a  

Multiple extremizls - general procedure: The multiple e x t r m a l  search 

technique included i n  AESOP is based on topologically invariant wssping 

of the perfomance response surface. The response surface is warped i n  

w manner vhic:h re ta ins  al l  t he  surface extremals but alters t h e i r  r e l a t ive  

locaticns a i ~ d  regions of influence. The regions of influence of an 

extreolzl i s  defixed as t h e  h u l l  o r  col lect ion of all points which lead t o  

the extremal i f  

influence of an extrenal decreases the probabili ty of locating a point i n  

t h e  nefghborhood of t he  extrenal i f  points are chosen a t  rzr?doi;?. 

in an organized m l t i v a r i a b l e  search, the  probabili ty of locating an 

extresal  havjng a mall  region of influence i s  l e s s  than t P a t  of locatir-g 

ttn e x t r a 5 3  heving a large region of influence, For e x a p l e ,  sc?pose the  

cxtrexals of the one-dhensional function crf f igure A5-are t o  be de te rdnee  

%R the  rmGe CL < a cH by the  sectioning approach. The four i n i t i s l  

values wp:loyed i n  this technique are denoted by fi t o  f4.  

gradient path i s  followed. Reducing t h e  region of 

Again, 

L 

Folloving evaluztion at these four points,  f b  is discerded, and t h e  

2' function 5.s evgluated a t  f A t  t h i s  point the  right-hem? extrercal, e 

has been elkiincted from t h e  search which now inevitEbly proceeds t o  the 

l e f t  hmd extreme1 a t  el. 

5' 

To f ind the  second extrernal, the  function F is varped by w i t i n g  

2B 
J - a*; a)a* - a* 5 = (aH - a*NQ aH - a* 



where 11 is a positive integer, and a* is the locstion of the left  

hand extreml.  
_ .  

A t y p i c d  relationship between 5 and- a is shown i n  figure (A61 

for the case I$ = 1. Differentiation of eqcation A7 with respect t o  a 

when 1.I = 1 results i n  

Note that  8s a 3 a*, 5' 4 0 p1.m botb the left and right. A t  

a* < a <d 5 vaxiss pra%ol ice l ly  k i t h  a. Figure A7 illus%rate$ 

these pairits. It e a  be seen %fiat si region eentered about a* 

transforss i n t o  2 scaIPer regicitl AC5, loe&ted i n  the neighborhood of 

n 

6 = a*. On the other f i s d ,  8 reglor: Aa2 situated in the neighborhood 

of the upper -seercb &bitt, zep into a wider r e g i m - i n  the.neighborhood 

of 6 = as. In genera, the slapes et a = % a d  a = % axe given 

by 2H;  the greete? the E, gre~ter  the vwpiog becozes. 

region of inffuerce of e is incrersed. Or; the \raped surface search 

by secticning cozzzences b5tk the etf&u&ticzl,o perforrznce at ?, t o  F4. 

Fo1loT;ing tktese i n i t i r i  e:.E3caticns 

2 

.L 

i s  Ciscareed (es opposed t o  the fl 





APPENDIX - ,B 
WCZASP-2 Assmptions and Model 

This appendix is devoted t o  a discussion of some of the  capabi l i t ies  

of' BUCLBSP-2 (A Coxputer Program f o r  the  I n s t a b i l i t y  h a l y s i s  of Biaxially 

Ineded Conposit? Panels) as it pertains  t o  t h e  buckling analysis of the  

camposite panels considered i n  t h e  present work. This computer program 

(reference 10)  i s  operational on the  CDC-6600 computer. It is quite 

reliable and gives very good r e s u l t s  for  the  buckling problem of compo- 

si te pznels. Sone of the  basic assumptions made i n  the  analysis of 

BUCLASP-2 are as follows: 

1. The panel mabers  are orthotropic 

2. 

3. 

4. 

5 .  

6. 

The Icatesial i s  l inea r ly  e l a s t i c  

Thin p la t e  theory i s  employed 

Effects of prebuckling deformations are ignored 

Eccentricity e f fec ts  &re accounted f o r  

Exterior edges i n  planes normzll t o  t h e  prismatic direction 

are assmed t o  be simply supported. 

Support cor,ditions at other boundaries a re  erbitrery. With the 

above assmptiorrs en "exect" analysis of the vhole panel i s  made. 

!This =lysis  r e s u l t s  i n  the prediction of W e r  buckling Eodes, l oca l  

buckling nodes, or coupled Euler and, loca laodes .  

The user of BUCLASP-2 has t o  define the  rratherzticaf nodel of the 

p m e l  under consideration. This mathematical model consists of three 

substructures, r-mely the start substructure, end substructure, and t h e  

repeat substructure. F i w r e  I31 shows the cross sect iors  of t h e  three 

40 



substructures for the pznel studied in this investigation. 

The results after usiog AESOP define t he  cross-sectional dimensions 

Tkese dimensions ere used to f i n d  the buckling load using of t he  p i e l .  

'RUCL4sP-2 L 



----- Pattern search 

Adaptive creep search 

Figure 1.- Search processes. 
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Figure 5.- Equivalent width. 
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